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ABSTRACT 

Genetic diversity among advanced rice (Oryza sativa L.) breeding lines was assessed using multivariate 

statistical methods to evaluate the set of 68 advanced rice breeding lines representing diverse genetic 

backgrounds was evaluated during Kharif 2024 at the Agricultural Research Station, Ragolu, to assess 

the extent of phenotypic and genetic divergence. The experiment was conducted in an Alpha Lattice 

Design with three replications, and eight key traits days to 50% flowering, plant height, ear-bearing 

tillers, panicle length, filled and ill-filled grains per panicle, test weight and grain yield per plant were 

recorded from randomly selected plants at maturity. Multivariate statistical approaches, including 

Mahalanobis D² analysis, Tocher’s clustering, factor analysis and principal component analysis (PCA), 

were applied to quantify variability and identify the traits contributing most to divergence. Significant 

multivariate differences among the genotypes confirmed the presence of substantial diversity. Days to 

50% flowering contributed the highest proportion to total divergence, followed by test weight, 

emphasizing the importance of maturity duration and grain weight in differentiating the lines. Tocher’s 

method grouped the genotypes into ten clusters that varied widely in size, including several singleton 

clusters representing highly distinct entries. The largest inter-cluster distances were observed between 

clusters with contrasting phenological and yield-related attributes, indicating their potential for 

generating wide variability in hybridization programs. Cluster mean analysis revealed groups with 

specific advantages such as high grain yield, greater spikelet fertility, bold grain type or early maturity. 

Factor analysis and PCA further supported the clustering pattern, with the first few components 

explaining the majority of variation and providing clear separation among genotypes. Overall, the study 

demonstrated rich and structured genetic diversity, offering valuable opportunities for selecting suitable 

parental combinations to enhance yield, quality and maturity traits in rice improvement programs. 

Keywords: Crop improvement, Cluster analysis, Diversity analysis, Principal component analysis, Rice 

and Selection. 
  

 
 

Introduction 

Rice (Oryza sativa L.) is one of the most 

important food crops globally, serving as the primary 

staple food for more than half of the world’s 

population, production sustainability challenged by 

multiple biotic and abiotic factors (Udayababu et al., 

2025). With rising population growth, climate change 

and the increasing demand for high-quality and high-

yielding cultivars, rice breeding programs have become 

more reliant on the effective utilization of genetic 

diversity (Satyanarayana et al., 2023). The availability 

of genetic variation not only enhances selection gains 

but also safeguards long-term breeding progress by 

mitigating vulnerability to biotic and abiotic stresses 

(Duppala et al., 2023). The strategic assessment of 

diversity among advanced breeding lines is therefore a 

critical step toward generating novel recombinants 

capable of meeting modern production challenges 

(Kumar et al., 2023). 
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Genetic diversity in rice is shaped by its extensive 

evolutionary history, domestication events and 

subsequent breeding interventions. Over time, 

intensive selection for specific agronomic traits has 

narrowed the genetic base of many rice cultivars, 

raising concerns over reduced resilience and 

adaptability (Fornasiero et al., 2022). Several studies 

demonstrated a decline in allelic richness among Indian 

rice varieties over breeding decades, underscoring the 

need for continuous introduction of diverse parental 

sources (Singh et al., 2016). Likewise, Xu et al. (2016) 

reported distinct genetic structuring within Chinese 

indica rice, suggesting that exploiting divergence 

among sub-populations can lead to greater heterotic 

potential. These findings emphasize that assessing 

diversity at both phenotypic and molecular levels is 

crucial to developing productive and climate-resilient 

rice cultivars. 

Phenotypic evaluation remains central to plant 

breeding due to its direct relevance to agronomic 

performance. Multivariate analysis allows researchers 

to examine complex trait relationships, reduce 

dimensionality and identify underlying patterns of 

variation that are difficult to detect through univariate 

methods (Madhukumar et al., 2023). Earlier rice 

studies have successfully employed multivariate 

statistics to reveal diversity patterns, identify superior 

genotypes and assist in parent selection. Chemutai et 

al. (2016), using principal coordinate analysis, 

demonstrated substantial trait-based variation among 

rice accessions, correlating physicochemical traits with 

agronomic divergence. Similarly, Choudhary et al. 

(2022) used PCA and cluster analysis to dissect 

morphological diversity in rice breeding lines and 

identified trait combinations contributing most to 

divergence (Sreenivas et al., 2023). These studies 

confirm the value of multivariate approaches in 

interpreting high-dimensional phenotypic data in rice 

research. 

Cluster analysis, in particular, facilitates grouping 

of genotypes into distinct clusters based on overall 

similarity or dissimilarity among traits (Kumar et al., 

2017). Genotypes positioned in widely separated 

clusters are typically considered suitable for 

hybridization, as the resulting crosses are expected to 

generate broad genetic variability and potentially high 

heterosis (Manoj et al., 2022). The Mahalanobis D² 

statistic remains one of the most widely used methods 

for quantifying multivariate divergence due to its 

robustness and ability to incorporate covariance 

information among traits. Recent studies by Sar and 

Kole (2023) and Allam et al. (2017) have demonstrated 

the effectiveness of D²-based clustering in identifying 

divergent parents for rice yield improvement and stress 

tolerance. These findings reaffirm that exploiting inter-

cluster divergence is a practical strategy to broaden 

genetic bases in breeding programs. 

Principal component analysis (PCA) and factor 

analysis complement cluster analysis by providing 

deeper insights into trait interrelationships and 

identifying the major components governing variation. 

PCA reduces complex trait data into a set of orthogonal 

components, enabling the visualization of genotype 

distribution across major axes of variation 

(Manojkumar et al., 2018). PCA-based biplots allow 

breeders to distinguish genotypes with desirable 

combinations of traits such as early maturity and high 

yield. Studies by Jeong et al. (2017) and Khatun et al. 

(2023) have shown that the first few PCs in rice often 

reflect phenology, plant stature, panicle architecture 

and grain-yield traits, demonstrating the biological 

relevance of PCA “trait dimensions.” Factor analysis, 

on the other hand, uncovers latent structures 

underlying observed variables, helping to identify trait 

groups that are biologically or physiologically related. 

Such information is valuable for trait-based selection 

and ideotype development. Studies combining both 

approaches of pehontypic selection with multivariate 

analysis helps in reinforcing the utility of these tools in 

guiding parent selection. The integration of 

multivariate statistics into classical breeding pipelines 

ultimately supports more strategic, informed and 

efficient hybridization programs. 

Given these advancements, assessing diversity 

among advanced breeding lines is particularly 

important because these lines represent selections with 

potential for varietal release (Swarup et al., 2021). 

Understanding how they differ in key agronomic traits, 

flowering time, plant height, tillering ability, panicle 

structure, grain filling and grain yield, enables breeders 

to identify complementary parents for crossing. Traits 

such as days to 50% flowering and plant height often 

reflect maturity and plant architecture, whereas test 

weight and grain yield per plant relate directly to 

productivity and grain quality. Exploring the structure 

of diversity across these traits helps ensure that 

selection targets are aligned with current breeding 

objectives such as higher yield, climate adaptation and 

improved grain quality (Sinha et al., 2023). The 

present study employed multivariate statistical 

techniques to comprehensively evaluate genetic 

diversity among advanced rice breeding lines. With the 

objectives of quantify the magnitude of genetic 

divergence using Mahalanobis D² and cluster analysis; 

identify the major factors governing trait variation 

using factor analysis; determine the principal 
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components underlying agronomic differences among 

genotypes and integrate the findings to propose 

suitable parental combinations for future rice 

improvement. Such a multivariate approach provides a 

robust framework for understanding trait-based 

diversity and supports strategic decision-making in rice 

breeding programs aimed at enhancing yield potential, 

stability and adaptability in changing agroecosystems. 

Materials and Methods 

A set of 68 advanced rice breeding lines 

(genotypes) were evaluated at Agricultural Research 

Station, Ragolu, of Acharya N G Ranga Agricultural 

University, situated at 83.240° E longitude and 18.240° 

N latitude, with an altitude of 27 meters above mean 

sea level. The site, representative of the North Coastal 

Zone of Andhra Pradesh, typically receives an annual 

rainfall of about 1111 mm (Udayababu et al., 2024), 

during the Kharif season of 2024. The entries represent 

diverse genetic backgrounds, drawn from different 

breeding programs to maximize variability. The 

experiment was laid out in a Alpha Lattice Design 

(ALD) with three replications. Each plot comprised 

plants spaced at [spacing, 20 cm × 15 cm] and cultural 

practices followed standard agronomic 

recommendations for rice. At maturity, ten plants per 

plot were randomly selected to record eight agronomic 

traits: days to 50% flowering (DFF), plant height (PH, 

in cm), ear-bearing tillers (EBT), panicle length (PL, in 

cm), filled grains per panicle (FGP), ill-filled grains 

per panicle (IFGP), test weight (TW, e.g., thousand-

grain weight in g) and grain yield per plant (GYP). 

 Multivariate divergence among the genotypes 

was assessed using Mahalanobis’s generalized distance 

(D²), computed from standardized trait data and the 

resulting genetic distances were used to group the 

genotypes into distinct, non-overlapping clusters 

through Tocher’s clustering method. The relative 

contribution of each trait to total genetic divergence 

was estimated following the procedure of Singh and 

Chaudhary (1979), enabling identification of the most 

influential discriminating traits. To further understand 

the structure of variability, factor analysis with 

varimax rotation was performed on the correlation 

matrix, retaining factors with eigenvalues greater than 

one and interpreting trait loadings to elucidate the 

latent dimensions governing trait variation. 

Additionally, principal component analysis (PCA) was 

applied to the standardized dataset, with the major 

principal components used to describe the proportion 

of total variability explained and to generate biplots 

illustrating genotype distribution across principal 

component space. All statistical analysis were executed 

using [Indostat 9.3.0]. 

Results and Discussion 

The assessment of genetic diversity among the 

advanced rice breeding lines using a combination of 

multivariate tools, namely cluster analysis, factor 

analysis and principal component analysis (PCA), 

provided a comprehensive picture of the phenotypic 

variability present in the experimental material. The 

study utilized eight quantitative traits recognized as 

highly influential in rice productivity and adaptation: 

days to fifty per cent flowering (DFF), plant height 

(PH), ear-bearing tillers per plant (EBT), panicle length 

(PL), filled grains per panicle (FGP), ill-filled grains 

per panicle (IFGP), test weight (TW) and grain yield 

per plant (GYP). These traits represent major 

morphological, reproductive and grain-quality 

parameters widely used in rice improvement programs. 

The highly significant Wilks’ Lambda test confirmed 

that the genotype set exhibited strong multivariate 

divergence, establishing a solid reason for further 

analysis (Table 1). The diversity patterns observed 

across these traits indicate the presence of substantial 

genetic variability, which can be effectively exploited 

for heterosis breeding and trait recombination. Recent 

studies in rice germplasm (Jha et al., 2024; Nivedha et 

al., 2024) have similarly emphasized the importance of 

integrated multivariate approaches to characterize 

complex relationships among traits, particularly when 

dealing with large sets of advanced breeding lines. The 

initial evaluation of trait contributions showed that 

DFF was the most influential trait, contributing nearly 

69 per cent to the total divergence. This suggests that 

flowering time is a key driver of differentiation among 

the genotypes, which aligns with the physiological 

importance of DFF in determining the duration of 

vegetative and reproductive phases. Flowering time is 

highly sensitive to photoperiod, temperature and 

genetic background; thus, even minor genetic 

differences lead to large phenotypic shifts. TW also 

contributed substantially (≈17 per cent), indicating that 

grain weight plays an important role in distinguishing 

genotypes. Grain weight is known to be a complex trait 

influenced by grain size, grain density, endosperm 

development and assimilate allocation. Several studies 

conducted after 2016 (Fujino et al., 2020 and Kim et 

al., 2024) have described the strong discriminatory 

capacity of DFF and TW in multivariate analysis of 

rice, thereby supporting the outcomes of the present 

study. 

Cluster analysis grouped the genotypes into ten 

distinct clusters, indicating a wide spread of variability 

(Table 3 and 4). The formation of multiple clusters 

suggests that the evaluated lines represent diverse 

genetic backgrounds, possibly derived from multiple 
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breeding pipelines or hybridization strategies. The 

distribution pattern of genotypes across clusters 

revealed that some clusters contained large numbers of 

genotypes, suggesting greater internal similarity, 

whereas others contained only one or two lines, 

reflecting their uniqueness. Inter-cluster distance 

analysis showed that the largest divergence occurred 

between Cluster 8 and Cluster 2, with a Mahalanobis 

distance exceeding 1300. This substantial magnitude 

implies that these clusters harbor highly differentiated 

genotypes suitable for maximizing heterotic gains 

when used as parents in hybridization. Other cluster 

pairs, such as Cluster 8 with Cluster 1 and Cluster 5 

with Cluster 9, also exhibited high divergence, 

reflecting the broad genetic base within the study 

material. Conversely, the smallest distances were 

observed between clusters such as Cluster 1 and 

Cluster 7, suggesting close similarity and minimal 

chances of producing wide variability through 

crossing. Several researchers, including Allam et al. 

(2017), Sar and Kole (2023) and Chandraker et al. 

(2024), have reported the utility of Mahalanobis 

distance in identifying promising and genetically 

distant parents for rice improvement. The patterns 

observed in the present analysis strongly align with 

these findings. 

The Tocher clustering method grouped the 

evaluated genotypes into ten distinct clusters, reflecting 

considerable genetic divergence within the material 

(Figure 1 and 2). Cluster sizes varied markedly, 

ranging from large, heterogeneous groups (Cluster I 

and Cluster II) to several single-genotype clusters 

(Clusters V, VI, VII, IX and X). Such variation in 

cluster composition indicates the presence of 

substantial diversity that can be exploited in a breeding 

program. Cluster I, containing the highest number of 

genotypes, included several MTU, BPT and RGL lines 

that shared similarity for multiple agronomic traits. 

The large size of this cluster suggests that these 

genotypes possess a comparatively narrow genetic base 

or similar phenotypic profiles. While these lines may 

be valuable for trait stabilization and selection within a 

homogeneous pool, they may contribute limited new 

variation when intercrossed among themselves. Cluster 

II also accommodated a large group of genotypes but 

differed in composition from Cluster I by including a 

mix of MTU, RGL, BPT and NLR lines. The moderate 

size of this cluster, combined with its diverse pedigree 

representation, indicates a broader genetic background. 

Genotypes from this cluster may serve as useful 

intermediate donors when aiming for recombinants 

with balanced performance. 

Clusters III and IV each consisted of a sizeable 

collection of genotypes that were clearly separated 

from those in the first two clusters. The presence of 

multiple breeding lines such as MTU 2631-88-1-2-2, 

BPT 3500 and NLR 3895 in Cluster III and MTU 

2744-96-1-1-1 and RNR 15048 in Cluster IV, points to 

unique trait combinations that distinguish these clusters 

from the rest. These groups likely represent sources of 

specific agronomic strengths such as stress tolerance, 

grain quality, or yield-related traits. Clusters V to X 

each contained only one genotype, indicating their 

pronounced genetic distinctiveness. Genotypes such as 

MTU 2675-2-2-2-1, BPT 3463, RGL 7038, RGL 7050 

and KNM 1638 likely possess rare allele combinations 

or extreme trait values that set them apart from the 

other entries. Such unique genotypes are especially 

valuable in hybridization programs, as crossing them 

with members of the larger clusters can maximize 

heterosis and broaden the genetic base of future 

breeding populations. 

The clear divergence among clusters provides a 

practical framework for parent selection. In general, 

crossing genetically distant clusters tends to produce 

greater heterosis and higher chances of identifying 

superior segregants. Based on the observed cluster 

pattern, Cluster I × Cluster V/VI/VII/IX/X 

combinations are expected to yield considerable 

variability due to the high divergence between the very 

large cluster and genetically isolated singletons. 

Cluster II or III × singleton clusters may also be 

suitable when targeting specific trait improvements 

such as grain quality or stress tolerance. Crosses within 

Cluster I or Cluster II are less likely to generate 

substantial variability but may be useful for refining 

traits under stabilizing selection. 

The examination of cluster means offered 

additional clarity on the specific trait advantages 

embedded in each group (Table 4). Cluster 7 emerged 

as the most promising cluster for yield improvement 

owing to its superior GYP mean (≈60 g). This cluster 

also displayed advantageous values for EBT and PH, 

indicating that its genotypes combine high productive 

tillering with tall stature, which can enhance biomass 

production and assimilate availability during grain 

filling. Clusters 3 and 4 showed elevated FGP values, 

making them attractive sources for enhancing spikelet 

fertility. Meanwhile, Cluster 9 recorded the highest 

TW, supporting its utility as a donor for improving 

grain boldness and milling quality. Other clusters 

revealed strengths in PL, DFF or reduced IFGP, each 

offering unique breeding value depending on the 

targeted trait combination. Clusters 8 and 10 exhibited 

low DFF values, representing early-flowering 
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genotypes. Such genotypes are particularly useful in 

regions where early maturity allows escape from 

terminal drought or late-season heat, or where multiple 

cropping systems require short-duration varieties. The 

distinctiveness of early and high-yield clusters implies 

opportunities to combine earliness with productivity, a 

breeding goal highlighted in several post-2016 studies 

(Thakur & Sarma, 2023; Kumar et al., 2021). The 

diversity revealed through clustering highlights the 

potential of the evaluated genotypes for breeding 

programs aimed at yield enhancement and trait 

improvement. The presence of several distinct clusters, 

including multiple singleton genotypes, ensures ample 

scope for developing high-performing segregating 

populations. Rational parent selection guided by cluster 

distance can therefore accelerate progress in varietal 

development and broaden the genetic base of future 

breeding lines. 

Factor analysis elucidated the underlying structure 

of trait relationships by identifying three principal 

factors with eigenvalues greater than one (Table 5). 

The first factor encapsulated a phenology–biomass–

fertility gradient, with positive loadings for DFF, PH 

and FGP and a negative loading for EBT. This 

suggests that taller, late-flowering genotypes exhibit 

stronger grain filling but tend to have fewer productive 

tillers. This trait combination is particularly relevant in 

varieties where high biomass contributes to assimilate 

partitioning during the reproductive stage, enhancing 

grain filling. However, the negative association with 

EBT indicates a trade-off typical in many inbred rice 

varieties, where genotypes invest either in tiller 

production or vegetative growth and panicle fertility. 

Factor 2 was dominated by high positive loadings for 

GYP and TW and a strong negative loading for IFGP, 

revealing that high yield is generally associated with 

larger grain size and reduced spikelet sterility. The 

complementarity of these traits is well recognized in 

rice breeding literature, where increasing grain weight 

and reducing sterility are major targets for yield 

enhancement. Factor 3 was defined by negative 

loadings for PL and IFGP, suggesting that shorter 

panicles tend to have fewer unproductive spikelets. 

Although this component explained a smaller 

proportion of variation, it represents a morpho-

reproductive axis important for panicle efficiency. The 

nearly complete communalities for all traits affirm the 

robustness of the factor model, a result consistent with 

multivariate trait analysis reported in recent diversity 

studies (Nguyen et al., 2019; Khatun et al., 2023). 

Principal Component Analysis, which is widely 

employed to identify major sources of orthogonal 

variation, revealed that four PCs accounted for over 87 

per cent of the total variability (Table 6 and 7). This 

indicates that the eight traits used in the study captured 

most of the underlying differences among the 

genotypes. The first principal component (PC1) 

explained 43.72 per cent of the variation and was 

heavily influenced by DFF, PH and FGP, with a 

negative contribution from EBT. This axis represents 

the overall growth and reproductive maturity profile of 

genotypes, separating late, tall, high-fertility lines from 

early, short, tiller-rich types. The second component 

(PC2), which explained 16.55 per cent of the variance, 

was shaped by high contributions from GYP, TW and 

PL and a negative contribution from IFGP. PC2 can 

therefore be interpreted as a yield and grain-quality 

axis, where long panicles, bold grains and high yields 

cluster together. The third component (PC3) explained 

an additional 16.23 per cent of the variation and 

distinguished genotypes based on panicle morphology 

and sterility-related traits. PC4 (10.61 per cent) 

captured a trade-off between grain weight (positive 

loading) and grain yield (negative loading), reflecting 

resource allocation differences among genotypes. This 

compensation mechanism has been widely discussed in 

modern rice phenomics, especially in studies focusing 

on grain-size QTLs and source–sink balance 

(Choudhary et al., 2022; Jeong et al., 2017). 

The scatter plots derived from PCA scores 

demonstrated the clear spatial separation of genotypes 

into well-defined groups (Figure 3 and 4). High PC1 

scorers were typically found among late maturing, tall 

and highly fertile genotypes. High PC2 scorers 

represented superior yielders with strong grain weight 

and long panicles, making them highly valuable for 

breeding programs focused on improving productivity. 

Genotypes with strong PC3 contributions exhibited 

variation in reproductive efficiency and spikelet 

sterility, indicating potential for improving panicle 

structure and sink capacity. PC4-dominated genotypes 

possessed distinct grain-size characteristics irrespective 

of yield, suggesting their suitability for grain-quality 

breeding. These PCA-based genotype assignments 

closely aligned with the clusters identified in the 

Tocher method, showing strong consistency across 

independent multivariate techniques. 

The integration of the three multivariate analytical 

approaches offers a robust framework for identifying 

promising parental combinations. Crosses among 

highly divergent clusters,such as Cluster 8 × Cluster 2 

or Cluster 9 × Cluster 7, are likely to generate broad 

variability essential for selecting transgressive 

segregants. Similarly, pairing high PC2 genotypes 

(yield and quality) with high PC3 genotypes (panicle 

architecture) could help combine complementary traits, 
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addressing both productivity and reproductive 

efficiency. Early-maturing clusters may be crossed 

with high-yielding groups to combine earliness with 

superior grain productivity. Such strategic parent 

selection aligns with contemporary breeding 

recommendations emphasizing the importance of 

combining divergence and complementarity (Kim et 

al., 2024; Chandraker et al., 2024; Sar & Kole, 2023). 

In summary, the analysis demonstrate that the 

advanced rice lines possess extensive and structured 

variability suitable for improving multiple traits 

simultaneously. The combined use of cluster analysis, 

factor analysis and PCA enabled a clear understanding 

of the diversity structure, trait complexes and potential 

parental groups. These findings not only confirm the 

richness of the evaluated germplasm but also provide a 

practical roadmap for breeding programs targeting 

higher grain yield, improved grain quality, stable 

fertility and desirable maturity profiles. The study 

further emphasizes the importance of integrating 

phenotypic multivariate analysis with genomic 

information in future research to enhance precision and 

accelerate variety development. 

 

Conclusion 

This study revealed clear, structured genetic 

diversity among advanced rice breeding lines through 

the combined use of cluster analysis, factor analysis 

and PCA. The identification of highly divergent 

clusters (Cluster 8 vs. Cluster 2) underscores the 

potential of selected parent combinations for heterosis 

breeding. The factor analysis clarified underlying trait 

dimensions, such as the trade-off between maturity and 

tillering or the association of yield with grain quality, 

that can guide ideotype design. PCA complemented 

these insights by highlighting genotypes with superior 

profiles for early maturity, high yield, or grain weight. 

By integrating multivariate tools, we offer a rational 

and data-driven strategy for parent selection and cross 

planning. The selected genotypes from divergent 

clusters can be used in future hybridization schemes to 

simultaneously improve yield, adaptability and grain 

quality. For greater precision, subsequent work should 

incorporate genomic data and possibly genomic 

selection to validate and refine these parent choices. 

Overall, our findings provide a strong foundation for 

targeted breeding of rice cultivars that align with 

modern goals of productivity and resilience. 

 

Table 1 : Contribution of different characters towards genetic divergence in advanced rice lines 
S.No. Trait Times Ranked 1st Contribution (%) 

1 Days to 50 per cent flowering 1572 69.01 

2 Plant height 38 1.67 

3 Ear bearing tillers 6 0.26 

4 Panicle length 167 7.33 

5 Filled grains per panicle 48 2.11 

6 Ill filled grains per panicle 57 2.5 

7 Test weight 385 16.9 

8 Grain yield 5 0.22 
 

Table 2 : Clustering pattern of diversity in the advanced rice lines by Tocher’s method 

Cluster Genotypes 
Number of 

Genotypes 

1 BPT 5204, BPT 3354, MTU 7029, MTU 2869-17-2-1-1, RGL 7044, MTU 1239, RGL 7051, MTU 2878-

13-1-1, MTU2776-29-1-1-1-2, RGL 7047, RGL7045, MTU 2851-19-1-1-1, MTU 2837-56-1-1-1, RGL 

7036, BPT 3456, MTU 2861-1-1-1-1-1, MTU2861-1-1-2, MTU 2854-9-1-1-1-1, BPT3278, RGL 7046, 

14 MTU 1121, 1MTU 2969-19-2-1 

22 

2 BPT 3451, MTU 2626-3-3-1-1-1, RGL 7049, RGL 7048, RGL 7034, MTU 1310, BPT 3468, RGL 7039, 

MTU 1318, MTU 2823-23-1-1, MTU 1262, BPT 3485, NLR 3881, MTU 2855-6-2-1-1, RGL 2537 
15 

3 MTU 2631-88-1-2-2, MTU 2716, BPT 3500, BPT 3250, MTU 2761-29-1-1-1-1, MTU 2868-143-1-2-1, 

MTU 2944-83-1-1-1, MTU 2949-33-1-1, MTU 2701-1-1-1-1, RGL 2538, NLR 3893, NLR 3895, JMP 

150 

13 

4 MTU 2744-96-1-1-1, NLR 3648, MTU 1224, RNR 15048, NLR 3869, NDLR 31, MTU 2879-19-2-1, 

MTU 2774-96-2-1-1 
8 

5 MTU 2675-2-2-2-1 1 

6 BPT 3463 1 

7 RGL 7038 1 

8 PR 126, MTU 1153, NLR 3897, MTU 2745-101-1-1-1, RGL 1880 5 

9 RGL 7050 1 

10 KNM 1638 1 
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Table 3 : Average intra and inter-cluster distances (D
2
 values) among ten clusters (obtained by Tocher’s method). 

 Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7 Cluster 8 Cluster 9 Cluster 10 

Cluster 1 58.83 214.98 153.59 286.90 143.00 436.78 90.52 632.05 182.21 578.70 

Cluster 2 214.98 66.05 539.09 765.48 104.21 1069.26 160.53 1357.41 101.71 1290.60 

Cluster 3 153.59 539.09 75.30 172.31 355.83 198.35 268.34 280.66 452.54 309.63 

Cluster 4 286.90 765.48 172.31 92.14 674.53 207.18 344.67 336.84 609.03 152.75 

Cluster 5 143.00 104.21 355.83 674.53 0.00 823.44 191.89 1004.27 168.25 1108.41 

Cluster 6 436.78 1069.26 198.35 207.18 823.44 0.00 574.94 199.43 886.72 105.16 

Cluster 7 90.52 160.53 268.34 344.67 191.89 574.94 0.00 879.18 108.08 698.83 

Cluster 8 632.05 1357.41 280.66 336.84 1004.27 199.43 879.18 101.18 1218.96 239.34 

Cluster 9 182.21 101.71 452.54 609.03 168.25 886.72 108.08 1218.96 0.00 1072.27 

Cluster 10 578.70 1290.60 309.63 152.75 1108.41 105.16 698.83 239.34 1072.27 0.00 

 

 

Table 4 : Mean values of ten clusters estimated by Tocher’s method in the advanced rice lines. 
 DFF PH EBT PL FGP IFGP TW GYLD 

Cluster 1 104.27 131.45 268.45 28.40 270.83 44.58 17.27 6.53 

Cluster 2 115.57 143.23 278.03 28.98 308.12 54.73 16.26 7.02 

Cluster 3 96.38 127.98 280.85 27.50 213.38 42.49 20.01 6.06 

Cluster 4 91.69 112.11 294.13 24.48 201.27 37.04 14.32 5.97 

Cluster 5 112.50 152.10 264.50 30.70 260.67 27.84 21.09 7.44 

Cluster 6 87.50 124.70 245.50 32.05 247.00 77.17 17.46 4.43 

Cluster 7 105.50 154.40 306.00 26.95 333.00 60.00 13.76 6.05 

Cluster 8 84.10 119.02 271.60 25.16 161.67 17.47 24.21 6.06 

Cluster 9 113.00 140.10 259.50 27.19 195.00 139.83 15.20 5.76 

Cluster 10 83.00 110.90 222.50 25.77 182.17 33.17 13.69 6.37 

 

Table 5 : Divergence explaining by factor analysis in the advanced rice lines 
Factor Analysis 

Variable 1 Factor 2 Factor 3 Factor 

Root 1.00 1.00 1.00 

σ² % Explained 12.50 12.50 12.50 

Σ σ² Cum Explained 33.33 66.67 100.00 

Days to 50 per cent flowering 0.49 0.02 0.16 

Plant height 0.50 -0.03 -0.30 

Ear bearing tillers -0.50 -0.01 0.09 

Panicle length -0.02 0.07 -0.75 

Filled grains per panicle 0.49 0.00 0.01 

Ill filled grains per panicle -0.03 -0.64 -0.42 

Test weight -0.11 -0.47 -0.35 

Grain yield 0.06 0.61 -0.10 

 
Table 6 : Principal Component Analysis in the advanced rice lines 

 1 Vector 2 Vector 3 Vector 

Eigen Value (Root) 3.50 1.32 1.30 

% Var. Exp. 43.72 16.55 16.23 

Cum Var. Exp. 43.72 60.27 76.50 

DFF 0.51 0.03 0.08 

PM 0.43 0.20 -0.35 

EST -0.46 -0.14 0.15 

PL -0.18 0.42 -0.60 

FGP 0.50 0.03 0.03 

IFGP -0.07 -0.36 -0.67 

TW -0.22 0.55 -0.05 

GYP -0.01 0.58 0.21 
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     Table 7 : Factor loadings on principal component axis by the advanced rice lines 

Genotype PCAI (X Vector) PCAII (Y Vector) PCA III (Z Vector) 

MTU 2774-96-2-1-1 61.41 23.39 -2.01 

PR 126 52.33 24.10 0.51 

MTU 2701-1-1-1-1 60.36 27.49 -1.87 

MTU 2744-96-1-1-1 62.87 17.75 2.66 

NLR 3648 62.55 17.00 4.48 

MTU 2868-143-1-2-1 66.89 23.08 -1.35 

NDLR 31 57.92 14.47 3.81 

MTU 2949-33-1-1 63.12 24.58 -0.23 

RGL 1580 53.96 33.95 -4.20 

MTU 2879-19-2-1 60.95 22.76 -3.86 

MTU 2761-29-1-1-1-1 65.49 24.59 -1.48 

MTU 2745-101-1-1-1 56.54 30.47 -3.62 

MTU 1153 50.88 26.86 -2.51 

MTU1121 66.79 26.03 0.07 

JMP 150 59.13 24.52 -5.23 

MTU 2969-19-2-1 70.16 21.49 0.77 

KNM 1638 56.24 21.62 -2.16 

BPT 3463 57.83 24.27 -8.63 

RNR 15048 64.74 16.97 -2.49 

NLR 3869 59.58 21.72 3.97 

MTU 2944-83-1-1-1 63.29 24.22 0.18 

NLR 3897 54.18 24.37 0.50 

RGL 7047 72.86 21.37 0.25 

BPT 3468 80.02 19.61 2.57 

MTU 2869-17-2-1-1 74.32 20.72 3.79 

RGL 7034 82.79 20.42 -0.27 

MTU 1239 74.21 25.93 1.00 

BPT 3456 73.79 24.38 -3.52 

MTU2861-1-1-2 71.13 26.72 -1.57 

MTU2776-29-1-1-1-2 75.98 24.90 0.58 

RGL7045 70.79 23.56 -1.71 

RGL 7048 81.53 19.69 2.84 

RGL 2538 61.61 24.67 2.46 

MTU 2854-9-1-1-1-1 71.17 25.67 -2.91 

MTU 2855-6-2-1-1 79.53 25.47 -1.50 

MTU 2851-1-1-1-1-1 72.87 27.68 -1.51 

MTU 2837-56-1-1-1 70.71 25.86 -1.07 

BPT 3451 84.56 21.08 0.81 

MTU 2851-19-1-1-1 74.85 23.22 -0.98 

RGL 7036 73.17 24.66 -2.91 

NLR 3895 64.36 22.46 1.82 

RGL 7038 77.01 19.47 -1.16 

MTU 1224 66.33 19.46 4.43 

RGL 7046 69.50 21.10 -3.99 

MTU 2626-3-3-1-1-1 84.06 22.47 0.83 

BPT 3500 68.01 23.93 -5.90 

MTU 2631-88-1-2-2 67.19 28.76 -3.54 

BPT 3250 67.25 24.57 -4.68 

NLR 3893 65.92 22.39 2.08 

MTU 1262 86.02 22.78 3.14 

MTU 7029 70.65 23.13 4.00 

NLR 3881 78.04 23.39 0.92 

MTU 1318 82.14 23.28 3.01 

BPT3278 72.24 20.95 -3.92 

BPT 5204 72.66 22.19 5.14 
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MTU 2823-23-1-1 82.92 25.38 3.64 

RGL 7044 72.83 25.61 1.56 

RGL 7051 74.81 23.38 0.07 

RGL 7049 84.73 21.14 -1.97 

MTU 2878-13-1-1 75.47 25.21 0.21 

RGL 7050 79.41 18.46 -2.59 

MTU 2675-2-2-2-1 78.21 29.07 -0.69 

RGL 7039 80.94 24.50 0.54 

MTU 1310 84.06 23.92 2.99 

BPT 3485 80.32 27.06 1.40 

BPT 3354 71.29 22.09 4.04 

MTU2716 66.13 29.73 -2.34 

RGL 2537 82.74 27.58 0.85 

 
Fig. 1 : Dendrogram depicting the diversity among advanced lines in different clusters 
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Fig. 2 : Intra and inter-cluster distance of genotypes in ten clusters based on Tocher’s method 

 

Fig. 3 : PCA 2D Biplot explaining the distribution of genotypes on different axis. 
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Fig. 4 : PCA 3D Biplot depicting the diversity among genotypes on different axis. 
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