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ABSTRACT

Genetic diversity among advanced rice (Oryza sativa L.) breeding lines was assessed using multivariate
statistical methods to evaluate the set of 68 advanced rice breeding lines representing diverse genetic
backgrounds was evaluated during Kharif 2024 at the Agricultural Research Station, Ragolu, to assess
the extent of phenotypic and genetic divergence. The experiment was conducted in an Alpha Lattice
Design with three replications, and eight key traits days to 50% flowering, plant height, ear-bearing
tillers, panicle length, filled and ill-filled grains per panicle, test weight and grain yield per plant were
recorded from randomly selected plants at maturity. Multivariate statistical approaches, including
Mahalanobis D? analysis, Tocher’s clustering, factor analysis and principal component analysis (PCA),
were applied to quantify variability and identify the traits contributing most to divergence. Significant
multivariate differences among the genotypes confirmed the presence of substantial diversity. Days to
50% flowering contributed the highest proportion to total divergence, followed by test weight,
emphasizing the importance of maturity duration and grain weight in differentiating the lines. Tocher’s
method grouped the genotypes into ten clusters that varied widely in size, including several singleton
clusters representing highly distinct entries. The largest inter-cluster distances were observed between
clusters with contrasting phenological and yield-related attributes, indicating their potential for
generating wide variability in hybridization programs. Cluster mean analysis revealed groups with
specific advantages such as high grain yield, greater spikelet fertility, bold grain type or early maturity.
Factor analysis and PCA further supported the clustering pattern, with the first few components
explaining the majority of variation and providing clear separation among genotypes. Overall, the study
demonstrated rich and structured genetic diversity, offering valuable opportunities for selecting suitable
parental combinations to enhance yield, quality and maturity traits in rice improvement programs.
Keywords: Crop improvement, Cluster analysis, Diversity analysis, Principal component analysis, Rice
and Selection.

Rice (Oryza sativa L.) is one of the most

Introduction diversity (Satyanarayana et al., 2023). The availability
of genetic variation not only enhances selection gains

but also safeguards long-term breeding progress by

important food crops globally, serving as the primary
staple food for more than half of the world’s
population, production sustainability challenged by
multiple biotic and abiotic factors (Udayababu et al.,
2025). With rising population growth, climate change
and the increasing demand for high-quality and high-
yielding cultivars, rice breeding programs have become
more reliant on the effective utilization of genetic

mitigating vulnerability to biotic and abiotic stresses
(Duppala et al., 2023). The strategic assessment of
diversity among advanced breeding lines is therefore a
critical step toward generating novel recombinants
capable of meeting modern production challenges
(Kumar et al., 2023).
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Genetic diversity in rice is shaped by its extensive
evolutionary history, domestication events and
subsequent breeding interventions. Over time,
intensive selection for specific agronomic traits has
narrowed the genetic base of many rice cultivars,
raising concerns over reduced resilience and
adaptability (Fornasiero et al,, 2022). Several studies
demonstrated a decline in allelic richness among Indian
rice varieties over breeding decades, underscoring the
need for continuous introduction of diverse parental
sources (Singh et al., 2016). Likewise, Xu et al. (2016)
reported distinct genetic structuring within Chinese
indica rice, suggesting that exploiting divergence
among sub-populations can lead to greater heterotic
potential. These findings emphasize that assessing
diversity at both phenotypic and molecular levels is
crucial to developing productive and climate-resilient
rice cultivars.

Phenotypic evaluation remains central to plant
breeding due to its direct relevance to agronomic
performance. Multivariate analysis allows researchers
to examine complex trait relationships, reduce
dimensionality and identify underlying patterns of
variation that are difficult to detect through univariate
methods (Madhukumar et al., 2023). Earlier rice
studies have successfully employed multivariate
statistics to reveal diversity patterns, identify superior
genotypes and assist in parent selection. Chemutai et
al. (2016), wusing principal coordinate analysis,
demonstrated substantial trait-based variation among
rice accessions, correlating physicochemical traits with
agronomic divergence. Similarly, Choudhary et al.
(2022) used PCA and cluster analysis to dissect
morphological diversity in rice breeding lines and
identified trait combinations contributing most to
divergence (Sreenivas et al., 2023). These studies
confirm the value of multivariate approaches in
interpreting high-dimensional phenotypic data in rice
research.

Cluster analysis, in particular, facilitates grouping
of genotypes into distinct clusters based on overall
similarity or dissimilarity among traits (Kumar et al.,
2017). Genotypes positioned in widely separated
clusters are typically considered suitable for
hybridization, as the resulting crosses are expected to
generate broad genetic variability and potentially high
heterosis (Manoj et al., 2022). The Mahalanobis D?
statistic remains one of the most widely used methods
for quantifying multivariate divergence due to its
robustness and ability to incorporate covariance
information among traits. Recent studies by Sar and
Kole (2023) and Allam et al. (2017) have demonstrated
the effectiveness of D?-based clustering in identifying

divergent parents for rice yield improvement and stress
tolerance. These findings reaffirm that exploiting inter-
cluster divergence is a practical strategy to broaden
genetic bases in breeding programs.

Principal component analysis (PCA) and factor
analysis complement cluster analysis by providing
deeper insights into trait interrelationships and
identifying the major components governing variation.
PCA reduces complex trait data into a set of orthogonal
components, enabling the visualization of genotype
distribution across major axes of variation
(Manojkumar et al., 2018). PCA-based biplots allow
breeders to distinguish genotypes with desirable
combinations of traits such as early maturity and high
yield. Studies by Jeong et al. (2017) and Khatun et al.
(2023) have shown that the first few PCs in rice often
reflect phenology, plant stature, panicle architecture
and grain-yield traits, demonstrating the biological
relevance of PCA “trait dimensions.” Factor analysis,
on the other hand, uncovers latent structures
underlying observed variables, helping to identify trait
groups that are biologically or physiologically related.
Such information is valuable for trait-based selection
and ideotype development. Studies combining both
approaches of pehontypic selection with multivariate
analysis helps in reinforcing the utility of these tools in
guiding parent selection. The integration of
multivariate statistics into classical breeding pipelines
ultimately supports more strategic, informed and
efficient hybridization programs.

Given these advancements, assessing diversity
among advanced breeding lines is particularly
important because these lines represent selections with
potential for varietal release (Swarup et al., 2021).
Understanding how they differ in key agronomic traits,
flowering time, plant height, tillering ability, panicle
structure, grain filling and grain yield, enables breeders
to identify complementary parents for crossing. Traits
such as days to 50% flowering and plant height often
reflect maturity and plant architecture, whereas test
weight and grain yield per plant relate directly to
productivity and grain quality. Exploring the structure
of diversity across these traits helps ensure that
selection targets are aligned with current breeding
objectives such as higher yield, climate adaptation and
improved grain quality (Sinha er al., 2023). The
present study employed multivariate statistical
techniques to comprehensively evaluate genetic
diversity among advanced rice breeding lines. With the
objectives of quantify the magnitude of genetic
divergence using Mahalanobis D? and cluster analysis;
identify the major factors governing trait variation
using factor analysis; determine the principal
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components underlying agronomic differences among
genotypes and integrate the findings to propose
suitable parental combinations for future rice
improvement. Such a multivariate approach provides a
robust framework for understanding trait-based
diversity and supports strategic decision-making in rice
breeding programs aimed at enhancing yield potential,
stability and adaptability in changing agroecosystems.

Materials and Methods

A set of 68 advanced rice breeding lines
(genotypes) were evaluated at Agricultural Research
Station, Ragolu, of Acharya N G Ranga Agricultural
University, situated at 83.240° E longitude and 18.240°
N latitude, with an altitude of 27 meters above mean
sea level. The site, representative of the North Coastal
Zone of Andhra Pradesh, typically receives an annual
rainfall of about 1111 mm (Udayababu et al., 2024),
during the Kharif season of 2024. The entries represent
diverse genetic backgrounds, drawn from different
breeding programs to maximize variability. The
experiment was laid out in a Alpha Lattice Design
(ALD) with three replications. Each plot comprised
plants spaced at [spacing, 20 cm x 15 cm] and cultural
practices followed standard agronomic
recommendations for rice. At maturity, ten plants per
plot were randomly selected to record eight agronomic
traits: days to 50% flowering (DFF), plant height (PH,
in cm), ear-bearing tillers (EBT), panicle length (PL, in
cm), filled grains per panicle (FGP), ill-filled grains
per panicle (IFGP), test weight (TW, e.g., thousand-
grain weight in g) and grain yield per plant (GYP).

Multivariate divergence among the genotypes
was assessed using Mahalanobis’s generalized distance
(D?), computed from standardized trait data and the
resulting genetic distances were used to group the
genotypes into distinct, non-overlapping clusters
through Tocher’s clustering method. The relative
contribution of each trait to total genetic divergence
was estimated following the procedure of Singh and
Chaudhary (1979), enabling identification of the most
influential discriminating traits. To further understand
the structure of variability, factor analysis with
varimax rotation was performed on the correlation
matrix, retaining factors with eigenvalues greater than
one and interpreting trait loadings to elucidate the
latent  dimensions  governing  trait  variation.
Additionally, principal component analysis (PCA) was
applied to the standardized dataset, with the major
principal components used to describe the proportion
of total variability explained and to generate biplots
illustrating genotype distribution across principal
component space. All statistical analysis were executed
using [Indostat 9.3.0].
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Results and Discussion

The assessment of genetic diversity among the
advanced rice breeding lines using a combination of
multivariate tools, namely cluster analysis, factor
analysis and principal component analysis (PCA),
provided a comprehensive picture of the phenotypic
variability present in the experimental material. The
study utilized eight quantitative traits recognized as
highly influential in rice productivity and adaptation:
days to fifty per cent flowering (DFF), plant height
(PH), ear-bearing tillers per plant (EBT), panicle length
(PL), filled grains per panicle (FGP), ill-filled grains
per panicle (IFGP), test weight (TW) and grain yield
per plant (GYP). These traits represent major
morphological, reproductive and  grain-quality
parameters widely used in rice improvement programs.
The highly significant Wilks’ Lambda test confirmed
that the genotype set exhibited strong multivariate
divergence, establishing a solid reason for further
analysis (Table 1). The diversity patterns observed
across these traits indicate the presence of substantial
genetic variability, which can be effectively exploited
for heterosis breeding and trait recombination. Recent
studies in rice germplasm (Jha et al., 2024; Nivedha et
al., 2024) have similarly emphasized the importance of
integrated multivariate approaches to characterize
complex relationships among traits, particularly when
dealing with large sets of advanced breeding lines. The
initial evaluation of trait contributions showed that
DFF was the most influential trait, contributing nearly
69 per cent to the total divergence. This suggests that
flowering time is a key driver of differentiation among
the genotypes, which aligns with the physiological
importance of DFF in determining the duration of
vegetative and reproductive phases. Flowering time is
highly sensitive to photoperiod, temperature and
genetic background; thus, even minor genetic
differences lead to large phenotypic shifts. TW also
contributed substantially (=17 per cent), indicating that
grain weight plays an important role in distinguishing
genotypes. Grain weight is known to be a complex trait
influenced by grain size, grain density, endosperm
development and assimilate allocation. Several studies
conducted after 2016 (Fujino et al., 2020 and Kim et
al., 2024) have described the strong discriminatory
capacity of DFF and TW in multivariate analysis of
rice, thereby supporting the outcomes of the present
study.

Cluster analysis grouped the genotypes into ten
distinct clusters, indicating a wide spread of variability
(Table 3 and 4). The formation of multiple clusters
suggests that the evaluated lines represent diverse
genetic backgrounds, possibly derived from multiple
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breeding pipelines or hybridization strategies. The
distribution pattern of genotypes across clusters
revealed that some clusters contained large numbers of
genotypes, suggesting greater internal similarity,
whereas others contained only one or two lines,
reflecting their uniqueness. Inter-cluster distance
analysis showed that the largest divergence occurred
between Cluster 8 and Cluster 2, with a Mahalanobis
distance exceeding 1300. This substantial magnitude
implies that these clusters harbor highly differentiated
genotypes suitable for maximizing heterotic gains
when used as parents in hybridization. Other cluster
pairs, such as Cluster 8 with Cluster 1 and Cluster 5
with Cluster 9, also exhibited high divergence,
reflecting the broad genetic base within the study
material. Conversely, the smallest distances were
observed between clusters such as Cluster 1 and
Cluster 7, suggesting close similarity and minimal
chances of producing wide variability through
crossing. Several researchers, including Allam et al.
(2017), Sar and Kole (2023) and Chandraker et al.
(2024), have reported the utility of Mahalanobis
distance in identifying promising and genetically
distant parents for rice improvement. The patterns
observed in the present analysis strongly align with
these findings.

The Tocher clustering method grouped the
evaluated genotypes into ten distinct clusters, reflecting
considerable genetic divergence within the material
(Figure 1 and 2). Cluster sizes varied markedly,
ranging from large, heterogeneous groups (Cluster I
and Cluster II) to several single-genotype clusters
(Clusters V, VI, VII, IX and X). Such variation in
cluster composition indicates the presence of
substantial diversity that can be exploited in a breeding
program. Cluster I, containing the highest number of
genotypes, included several MTU, BPT and RGL lines
that shared similarity for multiple agronomic traits.
The large size of this cluster suggests that these
genotypes possess a comparatively narrow genetic base
or similar phenotypic profiles. While these lines may
be valuable for trait stabilization and selection within a
homogeneous pool, they may contribute limited new
variation when intercrossed among themselves. Cluster
IT also accommodated a large group of genotypes but
differed in composition from Cluster I by including a
mix of MTU, RGL, BPT and NLR lines. The moderate
size of this cluster, combined with its diverse pedigree
representation, indicates a broader genetic background.
Genotypes from this cluster may serve as useful
intermediate donors when aiming for recombinants
with balanced performance.

Clusters III and IV each consisted of a sizeable
collection of genotypes that were clearly separated
from those in the first two clusters. The presence of
multiple breeding lines such as MTU 2631-88-1-2-2,
BPT 3500 and NLR 3895 in Cluster III and MTU
2744-96-1-1-1 and RNR 15048 in Cluster IV, points to
unique trait combinations that distinguish these clusters
from the rest. These groups likely represent sources of
specific agronomic strengths such as stress tolerance,
grain quality, or yield-related traits. Clusters V to X
each contained only one genotype, indicating their
pronounced genetic distinctiveness. Genotypes such as
MTU 2675-2-2-2-1, BPT 3463, RGL 7038, RGL 7050
and KNM 1638 likely possess rare allele combinations
or extreme trait values that set them apart from the
other entries. Such unique genotypes are especially
valuable in hybridization programs, as crossing them
with members of the larger clusters can maximize
heterosis and broaden the genetic base of future
breeding populations.

The clear divergence among clusters provides a
practical framework for parent selection. In general,
crossing genetically distant clusters tends to produce
greater heterosis and higher chances of identifying
superior segregants. Based on the observed cluster
pattern, Cluster 1 x Cluster V/VI/VIVIX/X
combinations are expected to yield considerable
variability due to the high divergence between the very
large cluster and genetically isolated singletons.
Cluster II or III x singleton clusters may also be
suitable when targeting specific trait improvements
such as grain quality or stress tolerance. Crosses within
Cluster I or Cluster II are less likely to generate
substantial variability but may be useful for refining
traits under stabilizing selection.

The examination of cluster means offered
additional clarity on the specific trait advantages
embedded in each group (Table 4). Cluster 7 emerged
as the most promising cluster for yield improvement
owing to its superior GYP mean (=60 g). This cluster
also displayed advantageous values for EBT and PH,
indicating that its genotypes combine high productive
tillering with tall stature, which can enhance biomass
production and assimilate availability during grain
filling. Clusters 3 and 4 showed elevated FGP values,
making them attractive sources for enhancing spikelet
fertility. Meanwhile, Cluster 9 recorded the highest
TW, supporting its utility as a donor for improving
grain boldness and milling quality. Other clusters
revealed strengths in PL, DFF or reduced IFGP, each
offering unique breeding value depending on the
targeted trait combination. Clusters 8 and 10 exhibited
low DFF values, representing early-flowering
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genotypes. Such genotypes are particularly useful in
regions where early maturity allows escape from
terminal drought or late-season heat, or where multiple
cropping systems require short-duration varieties. The
distinctiveness of early and high-yield clusters implies
opportunities to combine earliness with productivity, a
breeding goal highlighted in several post-2016 studies
(Thakur & Sarma, 2023; Kumar et al., 2021). The
diversity revealed through clustering highlights the
potential of the evaluated genotypes for breeding
programs aimed at yield enhancement and trait
improvement. The presence of several distinct clusters,
including multiple singleton genotypes, ensures ample
scope for developing high-performing segregating
populations. Rational parent selection guided by cluster
distance can therefore accelerate progress in varietal
development and broaden the genetic base of future
breeding lines.

Factor analysis elucidated the underlying structure
of trait relationships by identifying three principal
factors with eigenvalues greater than one (Table 5).
The first factor encapsulated a phenology—biomass—
fertility gradient, with positive loadings for DFF, PH
and FGP and a negative loading for EBT. This
suggests that taller, late-flowering genotypes exhibit
stronger grain filling but tend to have fewer productive
tillers. This trait combination is particularly relevant in
varieties where high biomass contributes to assimilate
partitioning during the reproductive stage, enhancing
grain filling. However, the negative association with
EBT indicates a trade-off typical in many inbred rice
varieties, where genotypes invest either in tiller
production or vegetative growth and panicle fertility.
Factor 2 was dominated by high positive loadings for
GYP and TW and a strong negative loading for IFGP,
revealing that high yield is generally associated with
larger grain size and reduced spikelet sterility. The
complementarity of these traits is well recognized in
rice breeding literature, where increasing grain weight
and reducing sterility are major targets for yield
enhancement. Factor 3 was defined by negative
loadings for PL and IFGP, suggesting that shorter
panicles tend to have fewer unproductive spikelets.
Although this component explained a smaller
proportion of variation, it represents a morpho-
reproductive axis important for panicle efficiency. The
nearly complete communalities for all traits affirm the
robustness of the factor model, a result consistent with
multivariate trait analysis reported in recent diversity
studies (Nguyen et al., 2019; Khatun et al., 2023).

Principal Component Analysis, which is widely
employed to identify major sources of orthogonal
variation, revealed that four PCs accounted for over 87

per cent of the total variability (Table 6 and 7). This
indicates that the eight traits used in the study captured
most of the underlying differences among the
genotypes. The first principal component (PCl1)
explained 43.72 per cent of the variation and was
heavily influenced by DFF, PH and FGP, with a
negative contribution from EBT. This axis represents
the overall growth and reproductive maturity profile of
genotypes, separating late, tall, high-fertility lines from
early, short, tiller-rich types. The second component
(PC2), which explained 16.55 per cent of the variance,
was shaped by high contributions from GYP, TW and
PL and a negative contribution from IFGP. PC2 can
therefore be interpreted as a yield and grain-quality
axis, where long panicles, bold grains and high yields
cluster together. The third component (PC3) explained
an additional 16.23 per cent of the variation and
distinguished genotypes based on panicle morphology
and sterility-related traits. PC4 (10.61 per cent)
captured a trade-off between grain weight (positive
loading) and grain yield (negative loading), reflecting
resource allocation differences among genotypes. This
compensation mechanism has been widely discussed in
modern rice phenomics, especially in studies focusing
on grain-size QTLs and source-sink balance
(Choudhary et al., 2022; Jeong et al., 2017).

The scatter plots derived from PCA scores
demonstrated the clear spatial separation of genotypes
into well-defined groups (Figure 3 and 4). High PCl
scorers were typically found among late maturing, tall
and highly fertile genotypes. High PC2 scorers
represented superior yielders with strong grain weight
and long panicles, making them highly valuable for
breeding programs focused on improving productivity.
Genotypes with strong PC3 contributions exhibited
variation in reproductive efficiency and spikelet
sterility, indicating potential for improving panicle
structure and sink capacity. PC4-dominated genotypes
possessed distinct grain-size characteristics irrespective
of yield, suggesting their suitability for grain-quality
breeding. These PCA-based genotype assignments
closely aligned with the clusters identified in the
Tocher method, showing strong consistency across
independent multivariate techniques.

The integration of the three multivariate analytical
approaches offers a robust framework for identifying
promising parental combinations. Crosses among
highly divergent clusters,such as Cluster 8 x Cluster 2
or Cluster 9 x Cluster 7, are likely to generate broad
variability —essential for selecting transgressive
segregants. Similarly, pairing high PC2 genotypes
(yield and quality) with high PC3 genotypes (panicle
architecture) could help combine complementary traits,
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addressing both productivity and reproductive
efficiency. Early-maturing clusters may be crossed
with high-yielding groups to combine earliness with
superior grain productivity. Such strategic parent
selection aligns with contemporary breeding
recommendations emphasizing the importance of
combining divergence and complementarity (Kim et
al., 2024; Chandraker et al., 2024; Sar & Kole, 2023).

In summary, the analysis demonstrate that the
advanced rice lines possess extensive and structured
variability suitable for improving multiple traits
simultaneously. The combined use of cluster analysis,
factor analysis and PCA enabled a clear understanding
of the diversity structure, trait complexes and potential
parental groups. These findings not only confirm the
richness of the evaluated germplasm but also provide a
practical roadmap for breeding programs targeting
higher grain yield, improved grain quality, stable
fertility and desirable maturity profiles. The study
further emphasizes the importance of integrating
phenotypic multivariate analysis with genomic
information in future research to enhance precision and
accelerate variety development.

Conclusion

This study revealed clear, structured genetic
diversity among advanced rice breeding lines through
the combined use of cluster analysis, factor analysis
and PCA. The identification of highly divergent
clusters (Cluster 8 vs. Cluster 2) underscores the
potential of selected parent combinations for heterosis
breeding. The factor analysis clarified underlying trait
dimensions, such as the trade-off between maturity and
tillering or the association of yield with grain quality,
that can guide ideotype design. PCA complemented
these insights by highlighting genotypes with superior
profiles for early maturity, high yield, or grain weight.
By integrating multivariate tools, we offer a rational
and data-driven strategy for parent selection and cross
planning. The selected genotypes from divergent
clusters can be used in future hybridization schemes to
simultaneously improve yield, adaptability and grain
quality. For greater precision, subsequent work should
incorporate genomic data and possibly genomic
selection to validate and refine these parent choices.
Overall, our findings provide a strong foundation for
targeted breeding of rice cultivars that align with
modern goals of productivity and resilience.

Table 1 : Contribution of different characters towards genetic divergence in advanced rice lines

S.No. Trait Times Ranked 1st Contribution (%)
1 Days to 50 per cent flowering 1572 69.01
2 Plant height 38 1.67
3 Ear bearing tillers 6 0.26
4 Panicle length 167 7.33
5 Filled grains per panicle 48 2.11
6 111 filled grains per panicle 57 2.5
7 Test weight 385 16.9
8 Grain yield 5 0.22
Table 2 : Clustering pattern of diversity in the advanced rice lines by Tocher’s method
Number of
Cluster Genotypes Genotypes
1 BPT 5204, BPT 3354, MTU 7029, MTU 2869-17-2-1-1, RGL 7044, MTU 1239, RGL 7051, MTU 2878- 22
13-1-1, MTU2776-29-1-1-1-2, RGL 7047, RGL7045, MTU 2851-19-1-1-1, MTU 2837-56-1-1-1, RGL
7036, BPT 3456, MTU 2861-1-1-1-1-1, MTU2861-1-1-2, MTU 2854-9-1-1-1-1, BPT3278, RGL 7046,
14 MTU 1121, IMTU 2969-19-2-1
2 BPT 3451, MTU 2626-3-3-1-1-1, RGL 7049, RGL 7048, RGL 7034, MTU 1310, BPT 3468, RGL 7039, 15
MTU 1318, MTU 2823-23-1-1, MTU 1262, BPT 3485, NLR 3881, MTU 2855-6-2-1-1, RGL 2537
3 MTU 2631-88-1-2-2, MTU 2716, BPT 3500, BPT 3250, MTU 2761-29-1-1-1-1, MTU 2868-143-1-2-1, 13
MTU 2944-83-1-1-1, MTU 2949-33-1-1, MTU 2701-1-1-1-1, RGL 2538, NLR 3893, NLR 3895, JMP
150
4 MTU 2744-96-1-1-1, NLR 3648, MTU 1224, RNR 15048, NLR 3869, NDLR 31, MTU 2879-19-2-1, 8
MTU 2774-96-2-1-1
5 MTU 2675-2-2-2-1 1
6 BPT 3463 1
7 | RGL7038 1
8 PR 126, MTU 1153, NLR 3897, MTU 2745-101-1-1-1, RGL 1880 5
9 | RGL 7050 1
10 | KNM 1638 1
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Table 3 : Average intra and inter-cluster distances (D? values) among ten clusters (obtained by Tocher’s method).

Cluster 1 | Cluster 2 | Cluster 3 | Cluster 4 | Cluster 5 | Cluster 6 | Cluster 7 | Cluster 8 | Cluster 9 | Cluster 10
Cluster 1 | 58.83 21498 | 153.59 | 286.90 | 143.00 | 436.78 90.52 632.05 | 182.21 578.70
Cluster 2 | 214.98 66.05 539.09 765.48 104.21 | 1069.26 | 160.53 | 1357.41 | 101.71 1290.60
Cluster 3 | 153.59 | 539.09 75.30 172.31 | 355.83 | 198.35 | 268.34 | 280.66 | 452.54 309.63
Cluster4 | 286.90 | 765.48 | 172.31 92.14 674.53 | 207.18 | 344.67 | 336.84 | 609.03 152.75
Cluster 5 | 143.00 104.21 355.83 674.53 0.00 823.44 191.89 | 1004.27 | 168.25 1108.41
Cluster 6 | 436.78 | 1069.26 | 198.35 | 207.18 | 823.44 0.00 57494 | 19943 | 886.72 105.16
Cluster 7 | 90.52 160.53 | 268.34 | 344.67 | 191.89 | 574.94 0.00 879.18 | 108.08 698.83
Cluster 8 | 632.05 | 1357.41 | 280.66 336.84 | 1004.27 | 199.43 879.18 101.18 | 1218.96 239.34
Cluster 9 | 182.21 101.71 452.54 609.03 168.25 886.72 108.08 | 1218.96 0.00 1072.27
Cluster 10| 578.70 | 1290.60 | 309.63 | 152.75 | 1108.41 | 105.16 | 698.83 | 239.34 | 1072.27 0.00
Table 4 : Mean values of ten clusters estimated by Tocher’s method in the advanced rice lines.
DFF PH EBT PL FGP IFGP W GYLD
Cluster 1 104.27 131.45 268.45 28.40 270.83 44.58 17.27 6.53
Cluster 2 115.57 143.23 278.03 28.98 308.12 54.73 16.26 7.02
Cluster 3 96.38 127.98 280.85 27.50 213.38 42.49 20.01 6.06
Cluster 4 91.69 112.11 294.13 24.48 201.27 37.04 14.32 597
Cluster 5 112.50 152.10 264.50 30.70 260.67 27.84 21.09 7.44
Cluster 6 87.50 124.70 245.50 32.05 247.00 77.17 17.46 4.43
Cluster 7 105.50 154.40 306.00 26.95 333.00 60.00 13.76 6.05
Cluster 8 84.10 119.02 271.60 25.16 161.67 17.47 24.21 6.06
Cluster 9 113.00 140.10 259.50 27.19 195.00 139.83 15.20 5.76
Cluster 10 83.00 110.90 222.50 25.717 182.17 33.17 13.69 6.37
Table 5 : Divergence explaining by factor analysis in the advanced rice lines
Factor Analysis
Variable 1 Factor 2 Factor 3 Factor
Root 1.00 1.00 1.00
62 % Explained 12.50 12.50 12.50
¥ 62 Cum Explained 33.33 66.67 100.00
Days to 50 per cent flowering 0.49 0.02 0.16
Plant height 0.50 -0.03 -0.30
Ear bearing tillers -0.50 -0.01 0.09
Panicle length -0.02 0.07 -0.75
Filled grains per panicle 0.49 0.00 0.01
111 filled grains per panicle -0.03 -0.64 -0.42
Test weight -0.11 -0.47 -0.35
Grain yield 0.06 0.61 -0.10
Table 6 : Principal Component Analysis in the advanced rice lines
1 Vector 2 Vector 3 Vector
Eigen Value (Root) 3.50 1.32 1.30
% Var. Exp. 43.72 16.55 16.23
Cum Var. Exp. 43.72 60.27 76.50
DFF 0.51 0.03 0.08
PM 0.43 0.20 -0.35
EST -0.46 -0.14 0.15
PL -0.18 0.42 -0.60
FGP 0.50 0.03 0.03
IFGP -0.07 -0.36 -0.67
™ -0.22 0.55 -0.05
GYP -0.01 0.58 0.21
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Table 7 : Factor loadings on principal component axis by the advanced rice lines

Genotype PCAI (X Vector) PCAII (Y Vector) PCA III (Z Vector)
MTU 2774-96-2-1-1 61.41 23.39 -2.01
PR 126 52.33 24.10 0.51
MTU 2701-1-1-1-1 60.36 27.49 -1.87
MTU 2744-96-1-1-1 62.87 17.75 2.66
NLR 3648 62.55 17.00 4.48
MTU 2868-143-1-2-1 66.89 23.08 -1.35
NDLR 31 57.92 14.47 3.81
MTU 2949-33-1-1 63.12 24.58 -0.23
RGL 1580 53.96 33.95 -4.20
MTU 2879-19-2-1 60.95 22.76 -3.86
MTU 2761-29-1-1-1-1 65.49 24.59 -1.48
MTU 2745-101-1-1-1 56.54 30.47 -3.62
MTU 1153 50.88 26.86 -2.51
MTUI1121 66.79 26.03 0.07
JMP 150 59.13 24.52 -5.23
MTU 2969-19-2-1 70.16 21.49 0.77
KNM 1638 56.24 21.62 -2.16
BPT 3463 57.83 24.27 -8.63
RNR 15048 64.74 16.97 -2.49
NLR 3869 59.58 21.72 3.97
MTU 2944-83-1-1-1 63.29 24.22 0.18
NLR 3897 54.18 24.37 0.50
RGL 7047 72.86 21.37 0.25
BPT 3468 80.02 19.61 2.57
MTU 2869-17-2-1-1 74.32 20.72 3.79
RGL 7034 82.79 20.42 -0.27
MTU 1239 74.21 25.93 1.00
BPT 3456 73.79 24.38 -3.52
MTU2861-1-1-2 71.13 26.72 -1.57
MTU2776-29-1-1-1-2 75.98 24.90 0.58
RGL7045 70.79 23.56 -1.71
RGL 7048 81.53 19.69 2.84
RGL 2538 61.61 24.67 2.46
MTU 2854-9-1-1-1-1 71.17 25.67 -2.91
MTU 2855-6-2-1-1 79.53 25.47 -1.50
MTU 2851-1-1-1-1-1 72.87 27.68 -1.51
MTU 2837-56-1-1-1 70.71 25.86 -1.07
BPT 3451 84.56 21.08 0.81
MTU 2851-19-1-1-1 74.85 23.22 -0.98
RGL 7036 73.17 24.66 -2.91
NLR 3895 64.36 22.46 1.82
RGL 7038 77.01 19.47 -1.16
MTU 1224 66.33 19.46 4.43
RGL 7046 69.50 21.10 -3.99
MTU 2626-3-3-1-1-1 84.06 22.47 0.83
BPT 3500 68.01 23.93 -5.90
MTU 2631-88-1-2-2 67.19 28.76 -3.54
BPT 3250 67.25 24.57 -4.68
NLR 3893 65.92 22.39 2.08
MTU 1262 86.02 22.78 3.14
MTU 7029 70.65 23.13 4.00
NLR 3881 78.04 23.39 0.92
MTU 1318 82.14 23.28 3.01
BPT3278 72.24 20.95 -3.92
BPT 5204 72.66 22.19 5.14
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MTU 2823-23-1-1 82.92 25.38 3.64
RGL 7044 72.83 25.61 1.56
RGL 7051 74.81 23.38 0.07
RGL 7049 84.73 21.14 -1.97
MTU 2878-13-1-1 75.47 25.21 0.21
RGL 7050 79.41 18.46 -2.59
MTU 2675-2-2-2-1 78.21 29.07 -0.69
RGL 7039 80.94 24.50 0.54
MTU 1310 84.06 23.92 2.99
BPT 3485 80.32 27.06 1.40
BPT 3354 71.29 22.09 4.04
MTU2716 66.13 29.73 -2.34
RGL 2537 82.74 27.58 0.85
Clustering by Tocher Method
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Fig. 1 : Dendrogram depicting the diversity among advanced lines in different clusters
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Tocher Method

Mahalnobis Euclidean Disatnce (Not to the Scale)

Fig. 2 : Intra and inter-cluster distance of genotypes in ten clusters based on Tocher’s method
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Fig. 3 : PCA 2D Biplot explaining the distribution of genotypes on different axis.



K. Madhu Kumar et al.

977

3D Plot

%

5N B3

PCA Score Il

10

Fig. 4 : PCA 3D Biplot depicting the diversity among genotypes on different axis.
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